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Abstract
We present a model for the leakage current in ferroelectric thin-film capacitors
which explains two of the observed phenomena that have escaped satisfactory
explanation, i.e. the occurrence of either a plateau or negative differential
resistivity at low voltages, and the observation of a positive temperature
coefficient of resistivity (PTCR) effect in certain samples in the high-voltage
regime. The leakage current is modelled by considering a diffusion-limited
current process, which in the high-voltage regime recovers the diffusion-limited
Schottky relationship of Simmons already shown to be applicable in these
systems.

For a number of years the problem of understanding leakage currents in ferroelectric capacitors
(or high-dielectric-constant capacitors using ferroelectric materials just above their phase
transtion, e.g. barium strontium titanate (BST)) has been of practical interest, and a large
number of papers have been published on the subject, a review of which can be found in
Scott’s book [1]. Typically, the currents observed appear to be either emission limited or space
charge limited. In this paper we restrict ourselves to the discussion of the emission-limited
type currents. What this paper shows is that a metal–ferroelectric–metal system with space
charge due to oxygen vacancies can be considered as a diffusion-limited current system. The
diffusion-limited current has two regimes: a low-voltage regime akin to the low-voltage regime
discussed in the theory of semiconductor punch-through diodes [2]; and a high-voltage regime
equivalent to the diffusion-limited Schottky relationship of Simmons [3].

We consider the field distribution in a capacitor (figure 1) which, as well as having a
large dielectric constant εs and high uniform concentration of stationary oxygen vacancies
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Figure 1. Band diagram and representation of charges used to calculate field and potential
distributions.

ND, has a remnant polarization, Pr . Although the oxygen vacancy distribution is considered
constant throughout the film the vacancies contribute space charge only when they lie above
the Fermi level and are unoccupied by electrons, i.e. in the depletion widths w1 and w2. The
Thomas–Fermi screening length in the electrode and the penetration of the metal states into the
ferroelectric are accounted for by separating Qm, the charge on the metal from Qss, the charge
due to surface states (metal-induced gap states) by an effective thickness δeff . This effective
thickness reflects the fact that there is a finite screening length in the metal (the Thomas–Fermi
screening length λtf ) and that metal-induced gap states penetrate a small distance into the
insulator (λMIGS).

δeff = λtf

ε0
+

λMIGS

ε∞ε0
. (1)

Metal-induced gap states have previously have been shown to be important in ferroelectric
thin-film capacitors by Robertson and Chen [4]. The metal screening length term for a good
metal is around 0.5 Å whilst ab initio simulations of the Pt–BaTiO3 interface by Rao et al [5]
suggest a MIG penetration length λMIGS of about 1.7 Å and ε∞ is around 5.6, so δeff is usually
between about 0.5 and 1 Å/ε0. In the following equations q is the charge of an electron.

We now consider that the electric displacement in the film is given by a field-independent
component, the remnant polarization Pr and a linear dielectric component εsε0 E where the
static dielectric constant of the film is εs and E is the electric field,

D = εsε0 E ± Pr. (2)

The sum of the charges in the system must equal zero since the electric displacement is zero
in both electrodes (far from the interface). In the centre of the film the field must equal the field
that would arise if there were no surface states or space charge, which we take to be the linear
drop ( ∂V

∂x = V
d ) that would occur if the sample were a perfect insulator. This is quite different

from the approach often taken, which is to treat a metal–semiconductor–metal system as two
semi-infinite junctions, with the electric field taken as zero in the regions of the film where there
is no space charge, regardless of the applied field. Such an approach would be incompatible with
the space-charge-free limit of a linear voltage drop for our insulating system. (This approach is
however perfectly appropriate for a single infinite-metal–infinite-semiconductor junction.) In
addition, because our system is ferroelectric, when there is a spontaneous polarization a finite
potential drop across the system occurs because of the imperfect screening of the depolarization
field, even in the absence of an applied field. Using these arguments one finds that the field in
the space-charge-free interior of the film is

E0 = − 1

εsε0

V ± Pr2δeff

2δeff + d
εsε0

. (3)

Our expressions for the charge on the metal electrodes (Qm1 and Qm2) are then

Qm1 = −Qss1 − q NDw1 − V ∓ Pr
d

εsε0

2δeff + d
εsε0

(4)
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Table 1. Expressions for the potentials and fields in the different regions of the capacitor.

Region Potential Field

0 � x � w1 Qm1δeff − E0
x

εsε0
+

q ND

εsε0
x
(
w1 − x

2

)
E(x) = E0 − q ND

εsε0
(w1 − x)

w1 < x < d − w2 Qm1δeff − E0
x

εsε0
+

q ND

2εsε0
w2

1 E(x) = E0

d − w2 < x < d Qm1δeff − E0
x

εsε0
+

q ND

2εsε0
w2

1 − q ND

2εsε0
(x − (d − w2))

2 E(x) = E0 +
q ND

εsε0
(x − (d − w2))

Qm2 = −Qss2 − q NDw2 +
V ∓ Pr

d
εsε0

2δeff + d
εsε0

. (5)

The amount of charge due to surface states (Qss1 and Qss2) is independent of voltage and
is found by the condition that the Fermi level at the interface of the ferroelectric is
S(φm) + (1 − S)(χ + (Ec − φ)) below the vacuum level where S = 1

1+q2δeff Ds
and φ is the

charge neutrality level (following Robertson and Chen [4] who give a value of S for BaTiO3

of 0.28); this gives

Qss1 = (1 − S)

(
−q NDw1 +

1

δeff
((φm − χ) − (Eg − φ))

)
. (6)

This result shows that the charge due to surface states is independent of voltage, and under
the assumptions that the two electrodes are the same and that the film is uniform, Qss1 = Qss2.

Finally, the width of the depletion layers is found using the condition that the potential
at x = w1 must be equal to the height of the donor trap level Et (which in samples with low
intrinsic conductivity and high dopant levels will be the semiconductor Fermi level). It is
found that the depletion regions are invariant with applied voltage,

w1 + εsε0 Sδeff =
[
(εsε0Sδeff)

2 +
2εsε0

q ND
((φm − χ) − (Ec − Et)

− (1 − S)((φm − χ) − (Ec − φ)))

] 1
2

(7)

and that for a symmetrical system w2 = w1. If a film is fully depleted (i.e., if the calculated
values of w1 and w2 are greater than d

2 (which means that the system Fermi level never reaches
the trap level)), the following equations may be used with w1 = w2 = d

2 .
The finding that the depletion widths do not change with field is at first quite surprising,

the typical idea being that in punch-through diodes depletion widths will change with field and
that at a certain applied bias the reverse-biased depletion width will ‘punch through’ to the
forward-biased Schottky barrier. But in fact what we show here is that it is not the depletion
width itself that changes size, but rather the physical location within the system of the field
inversion point. It is when this field inversion point coincides with the forward-biased Schottky
barrier that punch-through behaviour occurs. The expressions for the potentials and fields in
the different regions of the capacitor are displayed in table 1. An important result of this system
of equations is that below a certain critical voltage there is a point

x0 = − εsε0

q ND
E0 + d − w2 (8)

in the film at which the field is zero (the field inversion point referred to above). We can
calculate the current flowing in the device by determining the point in the film at which the
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field is zero. Here the current is entirely due to diffusion and is given by

J = qµkT
∂n

∂x
. (9)

To evaluate ∂n
∂x we look at the number of conduction electrons in the region d−w2 < x < d ,

which (under the assumption that all the conduction electrons come from the oxygen vacancy
trap level) is given by

n(x) = ND exp

(
− q

kT

(
(Ec − Et) +

q ND

2εsε0
(x − (d − w2))

2

))
. (10)

Taking the derivative and using the solution for x0 from above we find the current to be

J = qµND E0 exp

(
− q

kT

(
(Ec − Et) +

εsε0

2q ND
(E0)

2

))
. (11)

An equivalent expression for the current, which is also applicable for fully depleted films
(in contrast to the earlier expression, which applies to only partially depleted films), is

J = qµND E0 exp

(
− q

kT

(
φb − q NDw2

2εsε0
+

εsε0

2q ND
(E0)

2

))
. (12)

For a fully depleted film one simply substitutes w = d
2 into the equation above. These

relationships are applicable until x0 = d which is when V
2δeff εsε0+d = q NDw2 (or in other

words when the field at the cathode is zero). This is equivalent to punch-through, but a punch-
through of the field inversion point, rather than the edge of the depletion width; and it marks
the transition to a new conduction regime. The current at which the transition occurs is the
same as Frank and Simmons obtain [6], i.e.,

JT = −qµND
q NDw2

εsε0
exp

(
− φb

kT

)
. (13)

The voltage at which the transition occurs,

V = q NDw2

(
2δeff +

d

εsε0

)
(14)

is temperature and thickness dependent; the temperature dependence is somewhat complicated
because of the temperature dependence of the dielectric constant (and hence also the depletion
width). When the applied voltage is increased beyond this voltage, the image force pushes the
potential maximum back into the film, lowering the effective barrier. If we assume that the
new potential maximum is quite close to the interface, we can use the field at the interface to
calculate the Schottky barrier lowering as

�φb =
√

q

4πε∞ε0

(
−E0 − q NDw2

εsε0

)
. (15)

The dielectric constant ε∞ used here is the optical dielectric constant of the material (≈5.6)

and is used because electrons passing through the Schottky barrier do so sufficiently quickly
that they do not polarize the lattice [16, 7].

In this regime the current is

J = −qµND E0 exp

(
− q

kT
(φb − �φb)

)
. (16)

We note that this is the form of the Richardson–Schottky equation applicable in materials
with very short mean free paths and has been previously derived by Simmons [3]. This form
of the Richardson–Schottky equation has already been been noted as the appropriate one for
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Figure 2. (a) Leakage current data from 70 nm thick Au–BST–SrRuO3 film at room temperature
and at T = 70 K; (b) Scott et al [10]: leakage current of BST thin film showing flat plateau
followed by Schottky regime; (c) Watanabe et al [11]: leakage current of SBT film showing
negative differential resistivity followed by Schottky regime.

(This figure is in colour only in the electronic version)

ferroelectric thin films and has been used successfully to describe leakage current in BST thin
films by Zafar [8].

In a previous study on Au–BST–SrRuO3 capacitors [9] we incorrectly assumed that
the high-voltage regime corresponded to tunnelling through the space-charge region in the
electrode because of the correspondence between the threshold for the high-voltage regime
and the applied voltage at which the potential drop across the electrode equalled the barrier
height; i.e., it was noted that

VT = φb

2δeff

(
2δeff +

d

εsε0

)
. (17)

We note however that the present model predicts the same thickness dependence of the
threshold voltage: V ∝ (2δeff + d

εsε0
). Low-temperature measurements on the 70 nm film from

this study show that the high-voltage regime is Schottky-like both at room temperature and at
70 K (figure 2(a)).

The low-field expression derived above (equations (15) and (16)) can account for two kinds
of low-field behaviour observed in ferroelectric thin films: either a sharp increase followed by
a heretofore unexplained flat plateau (which is the behaviour of the equation when the donor
concentration is very high) or a negative differential resistivity (observed for lower donor
concentrations).

An example of the first kind of behaviour (figure 2(b)) is found in the data of Scott et al
[10] on BST thin films, whereas a good example of the second (figure 2(c)) can be found in
the SBT samples of Watanabe et al [11] or in PZT in the data of Scott et al [12] or Chen et al
[13]. Previous attempts to explain these effects have invoked the filling and emptying of trap
states. In both figures 2(b) and (c) it can be seen that the voltage threshold for crossover from
the low-voltage regime to the high-voltage regime is around 4 V. From equation (14), if the
film is 200 nm thick and has a dielectric constant of 1000 and a 10 nm depletion width, a 4 V
threshold implies an oxygen vacancy concentration of around 1020 cm−3, in good agreement
with typical values for ferroelectric thin films which vary from 1018 to 1021 cm−3 [14, 1]. We
note that although we have assumed a uniform oxygen vacancy distribution this is not the case
for most ferroelectric thin films which in reality have considerably more oxygen vacancies
near the surface than in the bulk of the film. The mobility µ shows considerable variation from
sample to sample, from SrTiO3 single crystals with electron mobilities of 0.1 cm2 V−1 s−1 to
BST thin films with mobilities of 0.001 cm2 V−1 s−1 [8]. For BST–Pt junctions the barrier
height had been estimated at around 0.6–0.7 eV (0.7 ± 0.2 [15], 0.65 ± 0.06 [8]). Using in
equation (13) a mobility of 0.1 cm2 V−1 s−1, barrier height of 0.65 eV, depletion width of
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10 nm, oxygen vacancy concentration of 1020 cm−3 and dielectric constant of 1000 we find a
threshold current at room temperature of approximately 3 × 10−8 A cm−2, in good agreement
with that found experimentally in figure 2(b) [10]. In reality variations in all these parameters
from one sample to another are considerable, as are the observed current magnitudes.

On taking the derivative with respect to voltage of our low-field expression, we find that

∂ J

∂V
= qµND

2δeffεsε0 + d

(
1 − (E0)

2 εsε0

kT ND

)
exp

(
− q

kT

(
φb − q NDw2

2εsε0
+

εsε0

2q ND
(E0)

2

))
.

The exponential term decreases with voltage towards the value exp(− φb

kT ) but is always
positive. If the other voltage-dependent term remains positive, the low-voltage leakage current
characteristic will be a rapid increase which plateaus off into an ohmic regime until such voltage
that the barrier begins to be lowered by the Schottky effect. However, if the voltage is greater
than

V > (2δeffεsε0 + d)

√
kT ε−1

s ε−1
0 ND (18)

the differential resistivity will become negative. We should not forget, however, the condition
that this conduction mechanism only operates when

V < 2q NDw2

(
2δeff +

d

εsε0

)
(19)

and so negative differential resistivity is observed only if√
εsε0kT

4q2 NDw2
2

< 1. (20)

If the film is 200 nm thick and has a dielectric constant of 1000 and a 10 nm depletion
width, at room temperature this condition implies that negative differential resistivity will
only be observed for oxygen concentrations greater than 3 × 1018 cm−3, though it is also
noticeable that the magnitude of the effect will be quite small for high vacancy concentrations.
Typical values for oxygen vacancy concentrations in titanate thin films are between 1018 and
1021 cm−3 [14, 1], so in principle most ferroelectric films might be expected to display negative
differential resistivity to some extent, though in highly oxygen deficient films the effect may
be too small to be noticed.

Within the Schottky injection regime one of the most interesting things to note is the role
that the dielectric constant plays in determining the temperature dependence of the current.
We can show that when the sample is below a ferroelectric phase transition and the dielectric
constant is increasing rapidly with temperature a regime of positive temperature coefficient of
resistivity (PTCR) may be observed. For this purpose we simplify the Schottky regime current
expression by taking

�φb =
√

q

4πε∞ε0
(−E0) (21)

and taking the derivative with respect to temperature we find that

∂ J

∂T
= J

(
− q

kT

[
1

T
(φb − �φb) − �φb

(
∂εs

∂T

(
δeff

2δeffεsε0 + d

))])
. (22)

The term 1
T (φb − �φb) is always positive. For a PTCR effect to be observed above a

certain applied voltage ∂εsε0
∂T ( δeff

2δeff εsε0+d ) must be large and positive, and hence the effect should
be seen only below TC . Whether or not PTCR behaviour is observed depends on the barrier
height and the screening length in the metal, with PTCR behaviour more likely to occur for
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capacitors with lower barrier heights and longer screening lengths. The PTCR effect predicted
here does not involve grain boundaries, as distinct from the PTCR effect in BaTiO3 ceramics
(for a review see Huybrechts et al [18]) which as shown by Sinclair and West [17] has both
bulk and grain boundary contributions. Hwang [19] has observed PTCR effects in films with
Ir electrodes, whereas similar films with Pt electrodes did not display PTCR behaviour. This is
consistent with our model because Ir has a significantly lower workfunction than Pt (4.23 eV
compared to 5.3 eV [20]).

Thus with a single model we have explained many unusual leakage current features
in ferroelectric capacitors. Further development of this model will require detailed fitting
of leakage current in samples in which the parameters of the model are independently
measured using other experimental techniques,for example by combining optical and electrical
measurement techniques to better determine the nature of the oxygen vacancy trap levels.
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